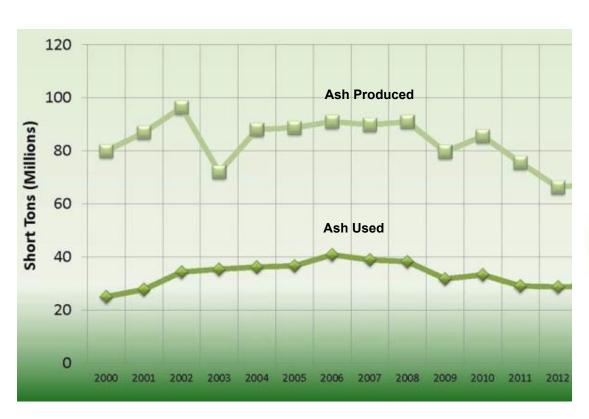
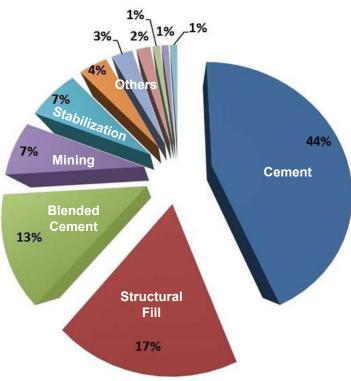


Kunigal Shivakumar

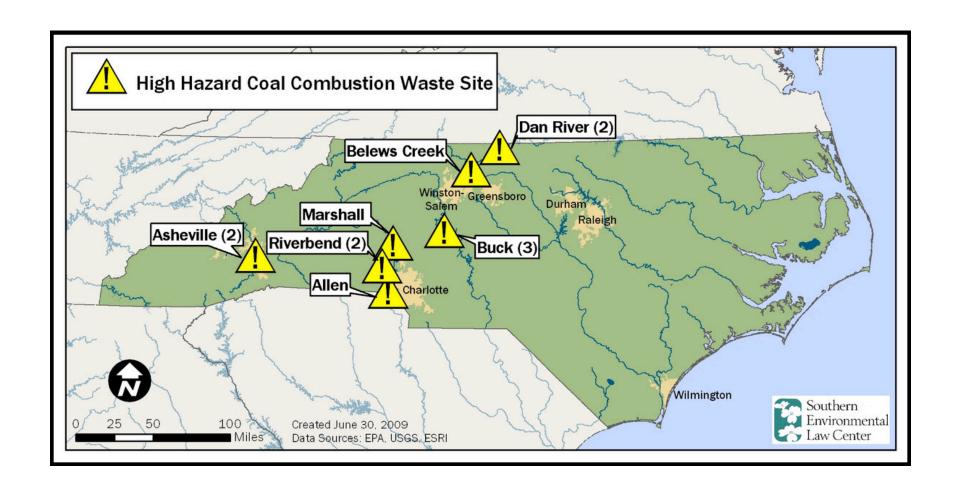
Research Professor and Director
Center for Composite Materials Research
Department of Mechanical Engineering
North Carolina A&T State University, Greensboro, NC
Ph# 336-285-3203; Email kunigal@ncat.edu


Acknowledgements:

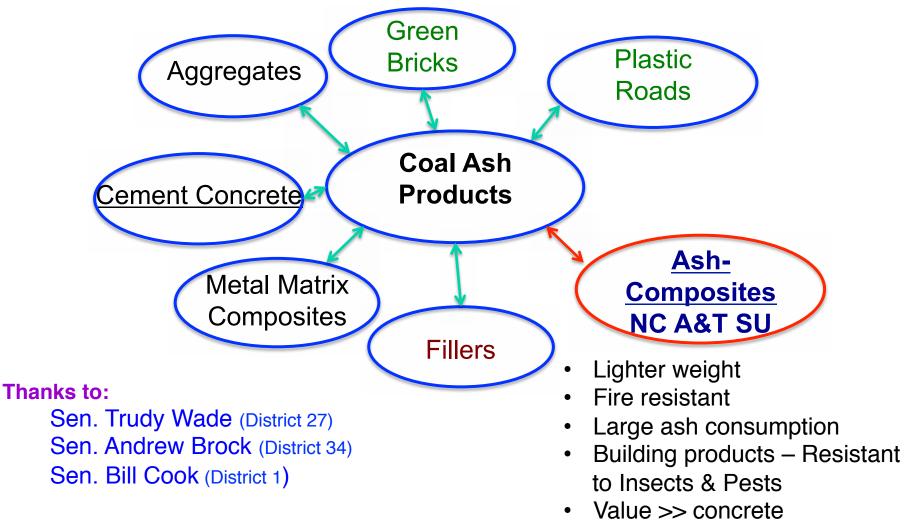
NCDEQ (Cynthia Moseley)


Mt. Olive Missionary Baptist Church 704 Old #1, Moncure, NC October 1, 2016

US Coal Ash Production and Utilization


Utilization

Unused Coal Ash: 45 mT/Yr
(1/2 of yearly Production)

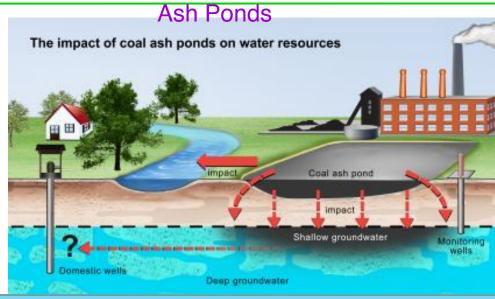

North Carolina Ash Ponds

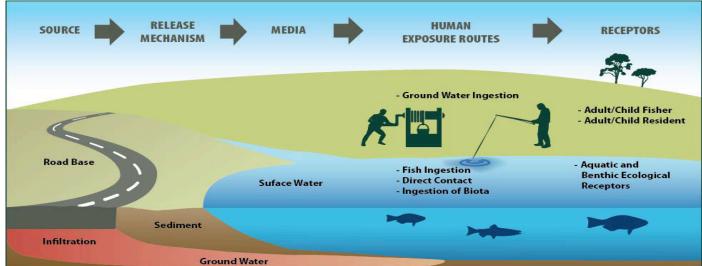


Coal Ash Utilization and Products

Coal Fired Steam Plant and Residuals

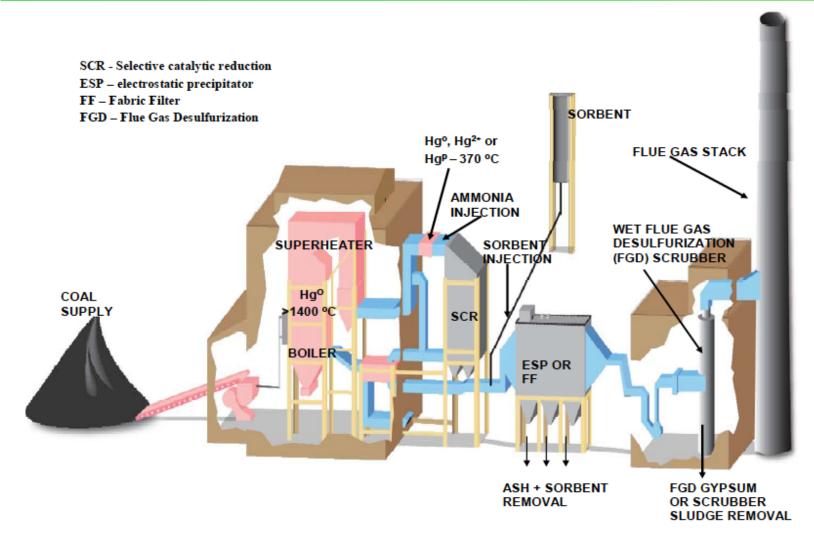
Agricultural and Technical State University


Air and Ground Water Pollution


Air-Open Pits

Courtesy: China

Road Base


North Carolina
Agricultural and Technical State University

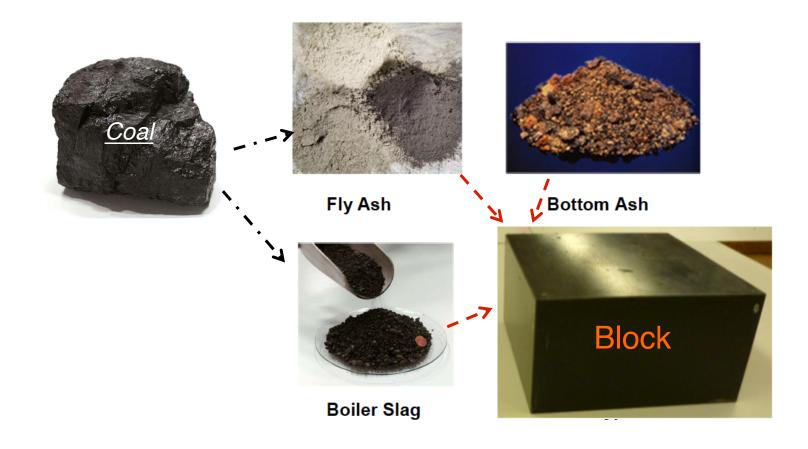
Courtesy: EPA

Emission Controls

Leach Test Results Fly Ash from 8 Plants(U.S. EPA, 2008)

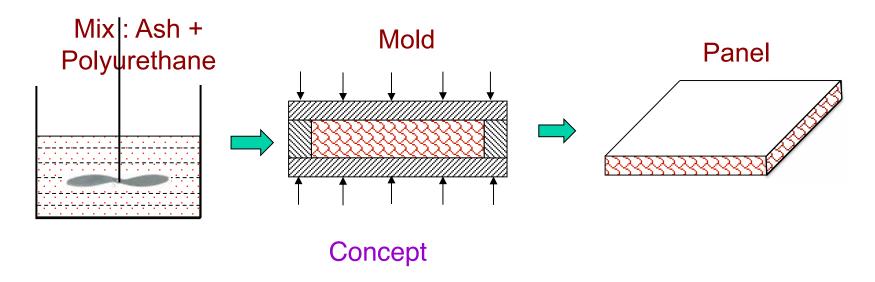
	Hg	As	Se	Sb	Ba	В	Cd	Cr	Co	Pb	Mo	Tl
Total in Material (mg/kg)	0.04- 0.6	70-90	2-30	3-15	600- 1,500	NA	0.7- 1.5	100- 200	20-50	40-90	10-20	3-13
Leach results (µg/L)	<0.01 - 0.4	7-300	7-400	<0.3 - 200	90- 4,000	200 - 300,0 00	<0.2 - 30	1- 4,000	<0.3 - 200	<0.2 -2	100- 40,00 0	<0.3 - 300
MCL ¹ (μg/L)	2	10	50	6	2,000	7,000 DWE L2	5	100	-	15	200 DWE L	2
TC³ (μg/L)	200	5,000	1,000	-	100,0 00	-	1,000	5,000	-	5,000	-	-
Variabilit	Low	Low	Low	Med		Med		Low			Low	
y relative to pH ⁴	to High	to Med	to Med	to High	Low	to High	High	to Med	High	Med	to Med	Med

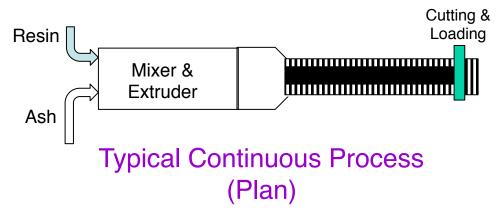
¹MCL is the maximum concentration limit for drinking water.


²DWEL is the drinking water equivalent level.

³TC is the toxicity characteristic and is a threshold for hazardous waste determinations.

⁴Variability defined as low is <1 order of magnitude difference; moderate is 1 to 2 orders of magnitude difference; and high is >2 orders of magnitude difference.


Reversal Process



Coal Ash-Composite

Ash-Composite Panels & Blocks

BC Steam Station Ash

STAR Processed Ash

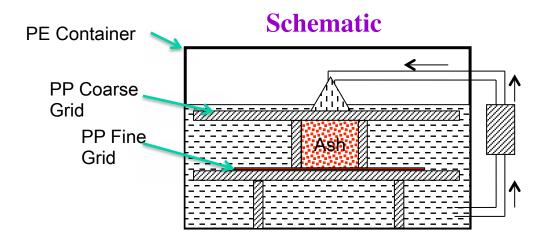
Reusable Ash-Composite Blocks


Ash Weight: 75% Composite; Potential to make >80%

Examples of Building Products

Base Board

Decorative Mold


Chair Rail

Leach Test: Ash and Composite & Block

EPA M1313

River flow model

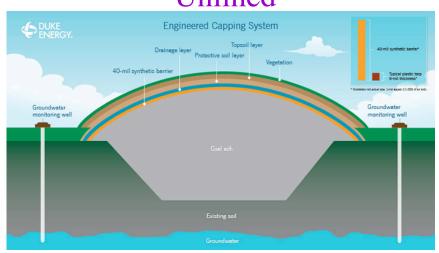
Leachate from Ash

As per EPA M1313 (LEAF)

	Content in micogram/Liter; 2-Day Leaching						
			B_A_4_2_D	B_A_7_2_D	B_A_10_2_D		
Mineral	EPA MCL	PQL	AC3717	AC3714	AC3718		
Antimony by I	6	10.0	35	19	30		
As by ICPMS	10	2.0	54	29	330		
B by ICP	7,000	50.0	4,400	3,800	3,800		
Ba by ICP	2,000	10.0	160	160	400		
Be by ICP	4	5.0	5.0 U	12	5.8		
Cd by ICPMS	5	0.5	6	16	3.7		
Cr by ICPMS	100	5.0	28	34	220		
Cu by ICPMS	1,300	2.0	65	680	170		
Mn by ICPMS	50	10.0	82	180	83		
Pb by ICPMS	15	2.0	12	16	140		
Se by ICPMS	50	1.0	240	52	350		
Thallium (Tl) I(2	2.0	8.4	24	12		
V by ICP	200	10.0	160	69	550		
Zn by ICPMS	5,000	10.0	260	760	380		

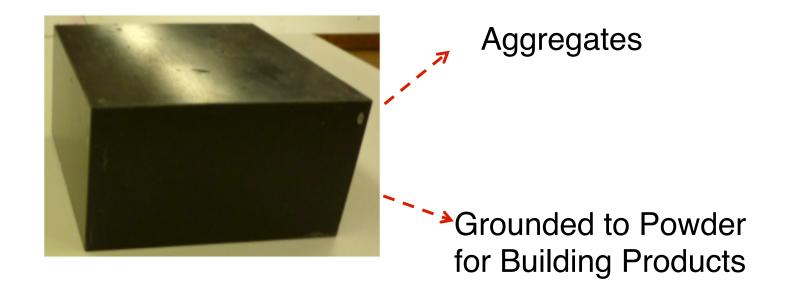
Leachate from Ash Block

Circulating Water


	Content in micogram/Liter						
			Distilled Water	Block_7_37_S			
Mineral	EPA MCL	PQL	AC3708	AC3710			
Antimony by ICPMS	6	10.0	10 U	10 U			
As by ICPMS	10	2.0	2.0 U	2.0 U			
B by ICP	7,000	50.0	100	460			
Ba by ICP	2,000	10.0	10 U	10 U			
Be by ICP	4	5.0	5.0 U	5.0 U			
Cd by ICPMS	5	0.5	0.5 U	0.5 U			
Cr by ICPMS	100	5.0	5.0 U	5.0 U			
Cu by ICPMS	1,300	2.0	2.0 U	9.2			
Mn by ICPMS	50	10.0	10 U	10 U			
Pb by ICPMS	15	2.0	2.0 U	2.3			
Se by ICPMS	50	1.0	1.0 U	1.0			
Thallium (TI) ICPMS	2	2.0	2.0 U	2.0 U			
V by ICP	200	10.0	10 U	10 U			
Zn by ICPMS	5,000	10.0	10 U	690			

Ash Storage

Unlined



Blocks are Reusable

Summary

- Coal Ash is not a Waste/Toxic; It is a Valuable Mineral!
- Ash-Composite is a Solution to the Coal Ash Problem
 - Offers Short & Long Term solutions: Composite Blocks, Building & Infrastructure Products
 - Blocks are reusable
 - Minimizes landfill
 - Non-radioactive
 - No heavy metal leachate
- Ash-Composite Technology is:
 - a. Safe; Reduces Natural Resource Consumption (Green Technology)
 - b. Minimizes Air & Ground Water Pollution
 - c. Uses High ash loading (≥80%)
 - d. Requires little or no energy and water
 - e. Suitable for In-situ manufacturing and storing in closing ash ponds
 - f. All materials used are Commercial Available